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Abstract

Many constrained optimization algorithms use a basis for the null space of

the matrix of constraint gradients. Recently, methods have been proposed that

enable this null space basis to vary continuously as a function of the iterates in a

neighborhood of the solution. This paper reports results from topology showing

that, in general, there is no continuous function that generates the null space

basis of all full rank rectangular matrices of a fixed size. Thus constrained

optimization algorithms cannot assume an everywhere continuous null space

basis. We also give some indication of where these discontinuities must occur.

We then propose an alternative implementation of a class of constrained optimi-

zation algorithms that uses approximations to the reduced Hessian of the

Lagrangian but is independent of the choice of null space basis. This approach

obviates the need for a continuously varying null space basis.
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1. Introduction.

Many recent papers on optimization algorithms use a basis for the null

space of a given matrix. In these contexts the matrix often is the transpose

of an nxt matrix A(z) whose columns are the gradients of nonlinear con-

straints at a point z. The required basis for the null space of A(z) T forms an

nx(n-t) matrix Z such that A(z)TZ = 0. When z and thus A changes it is

desirable t, have the matrix Z change with it in a smooth manner. Indeed, in

analysis of optimization methods, several authors (Coleman and Conn (1984),

McCormick (1980). Nocedal and Overton (1983), Womersley and Fletcher

(1982)) assume existence locally of a continuous function Z(z) that gives the

null space basis. Thus an important question is:

Question 1 : Given n>t1. is it possible to compute the basis z (A)

for the null space of a matrix AT as a continuous function defined

for all full rank values of AERx t ?

(It should be pointed out that the null space itself and the orthogonal projec-

tion onto it are uniquely defined; a basis for the null space is not uniquely

defined and so the possibility of a continuously varying choice of this basis is

in question.)

This question was addressed in a recent paper by Coleman and Sorenson

(1984). They point out that in several standard methods for computing Z

(usually as a by-product of the QR factorization of A), Z is not a continuous

function of A. However they also show that given any full rank matrix A, it is

possible to compute Z as a continuous function of A for all A in some neigh-

borhood of AX although this may not be of practical value in cases when A

depends upon the solution of the problem being solved. Gill, Murray,

Saunders, and Wright (1983) suggest a method which, given a sequence JAt 1.



generates Zt as a function of 4t and the QR factorization of 4t-,. With this

scheme, they show that if 4t - A*, and 2 114A -A* 11!9oa, then the sequence

jZk I converges. This last method appears to be a practical, if perhaps expen-

sive. approach. Note that that with this approach, Z is no longer a function

of A and it is possible that for distinct indices kc and 1, 46 =,!,, (or even

xt= zj) but Zt ;A Z1. Thus the question of whether Z can be defined as a con-

tinuous function of A remains to be answered.

In the next section, we first report that several results from topology

show that the answer to Question 1 is "no". This answer also implies that the

QR factorization of a matrix cannot be given by a function that is continuous

everywhere. We also give a proof of part of this result that shows, in addition.

that the disc ontinuities of x (A) can be numerous and widespread.

Section 3 discusses the dependence of some constrained optimization

algorithms on the null space basis. Successive quadratic programming algo-

rithms that use the reduced Hessian of the Lagrangian are independent of

the choice of null space basis, but similar algorithms that use a quasi-Newton

approximation to the reduced Hessian depend strongly upon the choice of

this basis. We propose a modification to these methods which makes the

iterates independent of the choice of the null space basis. This approach

obviates the need for a continuously varying null space basis.

2. The possibility of a continuous null space basis.

Here we consider a function that gives a basis for all or a part of the null

space of a matrix. and look at the question of what continuity properties it

can have. Let z be a matrix function from R~Ixt to R"", where n > t and

"n -t, with the following properties.



3

Properties of a partial null space basis function.

1. z(A)FR' " is defined for all full rank matrices in R"x'.

2. z(A) has full rank s for all such matrices A.

3. A'z (A) = 0 for all A in the domain of z.

If s = n -t we will refer to Z as a null space basis function.

The question of whether such a function z (A) can be continuous is an

important question in topology, and was studied by many mathematicians in

this century. The full answer, found by combining results in Eckmann (1943).

Adams (1962), and Whitehead (1963). is stated below.

Theorem ai Suppose z is a function from R"'* to R" " satisfying properties

1-3, where nt2, 1'gt<n, 1s!9n-t. A continuous function z satisfying these

properties exists in the following cases, and no others.

n :2, t = n-1, s = n-t =i

n=7, t=2. s=1,

n=8, t=3, s 1,

nt (2a-+1)26 160 , t = 1, s zb 2+8c -1,

where a !0, b = 1, 2, or 3, c 0.

An immediate corollary of Theorem 2.1 is that the answer to Question 1

is "yes" in the cases when the null space has dimension one or when A is 4X1

or Ex 1, and "no" in all other cases. Thus in general, one may not assume that

(A) is continuous. (When t = n -1, a continuous z(A) can be constructed by

a variant of the method of cofactors for calculating the inverse of a matrix.

In the 4x 1 case the null space basis is given by.

z (A)= -C"'-a4 "L
a1 4 a 5a4 -a1I -a 2
-a3 a 2 -a,

where a,, a2, as, and a4 are the components of A. This form is actually
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related to quaternions; the null space basis in the Bx1 case has a similar

form and is related to Cayley numbers.)

Since the last n-f columns in the orthogonal matrix of a QR factoriza-

tion of an nxt matrix A provides a null space basis, it follows from the above

theorem that the QR factorization of A with n >t +1 cannot, in general, be

given by an everywhere continuous function of A. However, the triangular

factor and the first t columns of the orthogonal factor can be computed by a

function which is continuous at all full rank A. For example. Gram-Schmidt

orthogonalization of the columns of A has this property.

Theorem 2.2 proves a stronger version of Theorem 2.1 in the cases when

n-t is even. We show that any function satisfying properties 1-3 has many

discontinuities in this case. These discontinuities must occur within a

specified distance of any given matrix, and they may occur at quite well con-

ditioned matrices. The norms referred to are the Euclidean vector norm and

the corresponding induced matrix norm.

Theorem 2.2 Suppose z is a function from Rnx to R'" satisfying properties

1-3. with n -t even, and a given matrix AER'n x" has smallest singular value

ag>0. Then for any a>O, z has a discontinuity at some matrix within the set

JA: II A-A I Iat +aj, and the discontinuity occurs at a matrix with smallest

singular value equal to min at-,, aj.

Proof. Express the singular value decomposition of A by

A EVT.

where U and V are orthogonal with dimension n xt and t xt respectively and

E is a txt diagonal matrix with diagonal elements ai a2t • • •at >0. Express

U in terms of its columns as U=[u u2 • ug]. Now consider the matrix

function A(u) defined by
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2(u) = [ul u 2 . u- u] diqg(ci1 ,a 2..... ag-i,a) V .  (2.1)

Let S denote the n -t + 1 dimensional subspace

juER4: u u = 0, i=1 ... , t-1;. Now define the function F on S by

F(u)= z (A(u))'

where the superscript 1 again denotes the first column. Note that since z (A)

has full rank the denominator is never zero, so IIP(u) I = 1 for all uES.

Note also that, since the columns of z (A) are orthogonal to the columns of A

for any A. and thus to the columns of U. F(u)ES for all uES.

Thus the function F maps the unit sphere in S into the unit sphere in S.

According to a well known theorem in topology (see for example Hilton and

Wylie (1962)) any map of the sphere in an odd dimensional space into itself

such that F(u) is orthogonal to u for all u in the sphere cannot be continu-

ous. Thus, if n-t is even, any function z (A) satisfying Properties 1-3 will

have a discontinuity at A(u) for some choice of u with flu Ii = 1. Now note

that l A(u)- I +a and that the smallest singular value of A(u) is

min ag. 1 , aj. U

This result is fairly sharp in that it shows that z (A) must have a discon-

tinuity in any ball around A of radius greater than at, while it is possible to

construct a continuous z (A) on any ball around A with radius less than ag.

This fact follows from a remark of Eckmann (1942). The following theorem

shows the construction of such a function.

Theorem 2.3. Let AERRX have smallest singular value at > 0, and let Z be

any null space basis for A. Then the function

z(A) = [I-A(A'A)-'AT]Z, (2.2)

is a continuous null space basis function over all A such that I IA-A if < ag.
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Proof. Obviously, Arz(A) = 0 for all A. To show where z(A) has full rank, sup-

pose that x (A)u = 0 for some A and some nonzero u EAR. Since the null

space of I-A(A2A)-IAT is equal to the range of A then Zu = Ay for some

yiER. This implies that A[TAy = ATZIu = 0. But then

_ ,r(ATA+i;jT)V
TV

Thus z (A) cannot be rank deficient if A-A I <at. 0

Note that the function z (A) does not give an orthonormal basis for the

null space of A, but to orthonormalize the basis by, say, Gram-Schmidt would

preserve the continuity. It is interesting to note that the function z (A)

defined by equation (2.2) actually gives the null space basis for nicn

minimizes I Z-Z II. (A similar construction of z (A),

z(A) = (f-(ATA1r,

which was used by Goodman (1982) in deriving a Newton method for con-

strained optimization, can also be shown to be a continuous null space basis

over the same region.)

While Theorems 2.1 and 2.2 conclusively answer Question 1. a relevant

question for many theoretical results in constrained optimization is:

Question 2 : Given a continuous function A(x) : DCR - R"' is it

possible to compute the basis z (x) for the null space of A(z)' as a

continuous function of x D ?

Obviously this is a different question than Question 1. There are clearly some

functions A(X) for which a continuous z(z) exists (e.g. A(z) = a constant

matrix or a diagonal matrix function of x). Indeed Wajewski (1935) shows

that if D is homeomorphic to a sphere, and if A(z) has full rank for all zED,
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then such a function exists. However the general answer to Question 2 also is

"no". For example, using the same notation as in the proof of Theorem 2.2,

for a given A, consider a matrix function of the form A(z) = A(z) as defined

by (2.1), Then the function given by the first column of z(z) maps R' into

the unit sphere in R". Now if, as before, we restrict x to lie in the unit sphere

in the the subspace S we have a map of the unit sphere in that space into

itself which must have a discontinuity if the dimension of the null space,

n -t. is odd. Thus the assumption that the function z (x) is continuous is not

justified in general.

3. The dependence of some optimization algorithms on the null space basis.

One of the main motivations for wanting a smoothly varying null space

basis arises in nonlinearly constrained optimization algorithms that make

use of an approximation to the reduced Hessian of the Lagrangian. Consider

the problem

minimize f(z) (3.1)

subject to c(x) = 0.

where f is a real-valued function on RI and c maps RI to R9, where t <n.

Let A(z) denote the nxt matrix whose columns are the gradients of the con-

straints. Given an estimate zk to the solution of (3.1), let Zt be a basis for

the null space of A(zk)T , that is an nix(n-t) full rank -natrix such that

A(xk)TZk = 0. Then the reduced Hessian of the Lagrangian for problem (3.1)

at xt relative to the null space of A(xk)T may be expressed as

Zk1V2L(zxXk)Zk. Note that the reduced Hessian is dependent on the choice of

null space basis. We will assume in this section that Zk is chosen to have

orthonormal columns.
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Algorithms for solving (3.1) which make use of approximations to a

reduced Hessian of the Lagrangian have been proposed by Coleman and Conn

(1984). by Womersley and Fletcher (1982) and by Nocedal and Overton

(1983). These algorithms are either a special case of, or are very similar to

successive quadratic programming, and have the following form.

Algorithm 1.

Given xk, let

h=- Z, M 1Zt rVf (xi)

vL =-A (WrA)-c () (3.2)

or

vk; =-A (AlA)-Ic (xk +h) (3.3)

X,+=Xk +hk +vk.

Here. 14k is an approximation to Z2'V2L(zkXk)Zk. Note that ht is a solution of

the homogeneous equality constrained quadratic program

minimize Vf (zk)Th + Yh r Z Mk Z rh (3.4)hE//n

subject to Al1h = 0.

Also note that if the "vertical step". vt is determined by (3.2) as opposed to

(3.3) this class of algorithms is a special case of successive quadratic pro-

gramming.

We are interested in the dependence of the step (xk+l - Zk) on Zt and on

the continuity of our choice of Zt. An important special case is when

M1 = Zk T Bk Zk

where Bk is an nxn matrix which does not depend on Zt. For example, Bt

might equal VeL(Z,k) or the identity matrix. In this case h* is the solution

to



9

minimize Vf (z )Th+MTBth

subject to Alh = 0.
and thus, in exact arithmetic, it and the entire algorithm is independent of

the choice of null space basis Zt.

However, when one tries to generate MA; oy quasi-Newton updates the

step tends to depend strongly on the choice of Zt. Suppose the reduced Hes-

sian approximation Mt is updated by a method such as DFP or BFGS so that

Mt+I satisfies

A+,Z r sk = ZTrk.

where Z is either Zt or Zt+1 . Reasonable choices for sk and yA/ are

S't = (X',.-z') (3.5)

and

YA; = VL(zk )+l..)-VL(zt+-h*,..). (3.8)

Other choices are suggested by Conn and Coleman (1984). by Womersley and

Fletcher (1982). and, comprehensively, by Nocedal and Overton (1983). Now if

14 is a good approximation to Zt7V 2L(zt.Xt)Zt, and if Zt+l is very different

from Zk, even with a rank two update we cannot expect Mt+l to give a good

approximation to Zt +ITV2L(zt .X )Zk +1.

Clearly it would be preferable for a reduced Hessian based algorithm not

to depend on the choice of the null space basis at all. Such an approach is

possible if, at each step, we regard the matrix M as implicitly giving an

approximation Bt to the entire Hessian. Note that if Mk is an approximation

to Zt7V2L(zt, )Zt then ZtMtZAt is an approximation to P'V2 L(zk,XI)P,

where

p= ZP =Z Z, r = ! -A (zt)[A (zk) TA(zk)]- IA(zt) r

is the orthogonal projector onto the null space of A(zx)T. and is independent

of the choice of ZA.
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Therefore we define

PB;Pk = ZkM;ZAT

and extend our definition of Bt to approximate the rest of the Hessian. The

idea of a reduced Hessian method is to ignore the contribution of

PktVL(xk,.A)(I-P) to the Hessian so we will take

PkB(I-Pk) = (I-Pk)BkPk = 0.
Now the term (I-Pt)Bt(I-P) has no effect on the current step, but it could

affect all parts of Bk+l and thus subsequent steps. Just as a scaled identity is

often used as an initial Hessian approximation, we will let

(I-Pt)Bt(I-Pt) = PA(I-Pt)I(I-P) = Ok(I-P).

The scaling factor &k is an approximation to II V2L(zkAk) I; for example

At = I I II is reasonable and minimizes the condition number of II Bt II.

Thus. given Mt, our implicit Hessian approximation is

Bt = PtBAPk+PkBk(I-Pt)+(I-Pt)BtPt+(I-P )Bk(I-Pt)

= ZktZT+#(I-ZtZ 11).

Now given the approximation Bt to the entire Hessian, the reduced Hes-

sian approximation corresponding to a new basis Zt +I is given by

Zk+TBkZt+I = TTM, T + A (I-T TT)

where

TI = ZTZ+ 1.

This matrix may then be updated to give Mt,,.

The above logic leads to the following algorithm.

Algorithm 2

1. Given z, and Mt compute h, and vk as in Algorithm 1.

Z Let Z,+I = Zt+h +vt.

3. Compute Z + 1, Tk = ZkT Z, + I and pk*

4. Let
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Mb = r , -#A 1) T, +#A L

5. Update Mt to get Mt 1+ using the DFP or BFGS update,

with secant equation Mk +IZ,+ITsk, = 41,+ y,.

B. Set k to k + 1 and go to step 1.

In step 5 a choice of st and VI; such as that given in (3.5) and (3.6) is rea-

sonable as are any of the Z+l based choices given in Nocedal and Overton

(1983. p.28). However if. instead, the update involves Zrst and Zy,. as

does the one used by used by Coleman and Conn (1984. p. 750). then the

update in step 5 should come before step 3.

It should be noted that this algorithm involves three extra matrix multi-

plications over Algorithm 1 for a total of 2(n-t)3+n(n-t)2 extra multiplica-

tions. If n -t is small relative to n this is much less than the work involved in

the computation of Z; it is also less work than the modification proposed by

Gill, Murray, Saunders. and Wright to make Z vary smoothly, which was men-

tioned in Section 1. The benefit of this extra effort is that the algorithm is

independent of the choice of basis as described below.

Theorem 3.1. If Algorithm 2 is used with the initial matrix Ma = Zo"BoZo

where B 0 is independent of Zo, and if Sk and yk are given by (3.5)and (3.6).

then the iterates produced are independent of the choice of Zt for k 1.

Proof. One need only note that Algorithm 2 is equivalent to the following algo-

rithm if we let Bk = Zt MA Z t .

Algorithm 3

1. Given xt and Bt compute hk by

minimize Vf (zt)Th+Jh.TBjh

subject to Ah = 0.

Compute vt as in Algorithm 1.
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2. Let Zh+1 = Z+ht+vt.

3. Compute P +1. and #.

4. Let

Bk = P&+,(Bk-,PkPk)Pk+1+PhJ.

5. Update B using the DFP or BFGS update,

with secant equation Btil Pt+lsk = Pt+lvt.

6. Set k to k+1 and go to 1.

Note that this algorithm does not involve Zt at all; thus the equivalent Algo-

rithm. 2 is independent of Zt. *

Algorithm 2 is very similar to the algorithms proposed by Coleman and

Conn (1984). by Womersley and Fletcher (1982). and by Nocedal and Overton

(1983). We have of course only described it very generally, but the main

difference is the subspace shift in Step 4. Because of this it cannot be con-

sidered a special case of these algorithms, and questions of convergence

need to be considered. We believe that the subspace shift is a good alterna-

tive to trying to ensure some kind of continuous change in the null space

basis.
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